
MADA UniC10 Plugin 4.14.x

API Documentation 1.14.0

2

Table of contents
Overview.. 4

Registration ... 5

Memory Management .. 6

Function description .. 7

GetDLLVersion ... 8

SetLanguage .. 9

CheckRegistration .. 10

PerformRegistration .. 11

GetCustomerCode ... 12

ClearRegistration ... 13

GetRegisteredReaderNames ... 14

IsPCSCReader ... 15

ConnectReader .. 16

CheckReaderConnection ... 17

GetConnectedComPort ... 18

GetReaderSNR ... 19

DisconnectReader ... 20

SearchCards ... 21

SearchCardsExtraInfo .. 22

PrepareCoding ... 24

GetLoadedCommissionTransType ... 27

AnalyzeCodingMask .. 28

ReadLegicMaster ... 30

CheckLegicMasters .. 31

ReadLegicMasterMemory ... 33

Code ... 34

SleepAndCode ... 35

CodeWithCallback ... 36

AbortCoding .. 37

GetCodingState ... 38

GetLog ... 39

GetCombiLog ... 41

FreeLog .. 42

FreeWideChar .. 43

3

LoadReadDefinition ... 44

ReadCard ... 45

Implementation Guidelines ... 46

Version History .. 48

4

Overview
UniC10 Plugin is a lightweight DLL interface to the MADA UniC10 Universal Coding software’s core

coding functionality. It allows connecting to a MADA RFID reader on a serial port and coding of RFID

transponders (in the following simply called “cards”).

The coding definition of the cards as well as the actual card type (e.g. LEGIC Prime®, Mifare DESFire,

etc.) is defined in so-called coding masks or commissions.

A commission file is created by MADA Marx Datentechnik GmbH and defines card-type specific data

and application structure which will be applied to all cards coded with the commission.

In addition to the fix data and application structure each commission allows the usage of user-

definable data fields which can be filled separately for each coded card. There are two types of these

user-definable data fields:

a) Card ID: A decimal number that can be used for uniquely identifying a card in a more human-

readable form than the card’s unique serial number (UID). A commission can define more

than one card ID field but all fields are filled with the same decimal input value. It is however

possible to individually define for each card ID field how the decimal card ID value is to be

coded onto the card. The following conversions are available:

• HEX: Decimal value is directly coded onto the card. Card ID 123 would be coded as

0x7B.

• ASCII: Decimal value is coded in ASCII representation. Card ID 123 would be coded as

0x303132.

• BCD: Decimal value is coded in BCD representation. Card ID 123 would be coded as

0x123.

b) Variable Data: A variable data field is an arbitrary area of data that can be filled in a highly

customizable way. Usually the data of variable data fields stays the same for a batch of coded

cards but of course it is also possible to change the data for every card. Typical examples for

variable data fields would be the production year or the currency of value cards in a cash

application. A variable data field is addressable by a unique name and the data entered by

the user is predefined per variable data field as one of the following values:

• ASCII: The user may enter a string of ASCII characters (0x20-0xFF).

• HEX: Valid input characters are all Hexadecimal numbers (“0-9”, “a-f” and “A-F”).

• Decimal: User may enter a decimal number that is only limited by the size of the

variable data field.

• BCD: Same as HEX, but only BCD characters (“0-9”) are allowed.

Since DLL version 4.6.0 it is possible to load more than one commission at once.

This allows the coding of combi cards (for example a card containing both a LEGIC Prime® and a

Mifare DESFire chip) in a single step if the connected reader supports all chips. Before version 4.6.0

the client application had to handle the coding of combi cards.

Also introduced in version 4.6.0 is a basic read functionality. This function works similar to the

encoding process in that a so called read definition file is created by MADA Marx Datentechnik. This

file defines the position and format of data on a transponder that already contains an encoding. The

read function then allows reading the data at the position defined in the read definition file.

5

Registration
In order to be able to load and encode commissions, the UniC10 Plugin DLL has to be registered first.

UniC10 Plugin offers three modes of registration:

1) Online Registration: Registration is performed with a supplied serial number over an internet

connection to the MADA registration server. In case there is no internet connection available,

the online registration can also be performed by requesting an activation key by phone. The

MADA registration server is contacted through port 1979, so that port needs to be accessible

in the local network settings. Online registration is only valid for the system it was first

performed on.

2) Dongle: As long as a valid dongle is inserted, registration is considered to be successfully

performed on the system.

3) License File: The registration is stored in a file named “license.lic” which is created by MADA.

This file has to be copied to the same directory as the UniC10 Plugin DLL. A license file is

always linked to a specific hardware ID of one (or more) RFID reader which is also supplied

and branded by MADA.

A registered UniC10 Plugin always contains a hidden customer code and only accepts commissions

that are created on a system which contains the same customer code.

If special demo-commissions created by MADA Marx Datentechnik GmbH are used, no registration is

necessary. The example commissions provided with this API package for example are demo-

commissions which require no registration.

6

Memory Management
Several UniC10 Plugin functions return string data either as a return value or as PWCHAR parameters.

The memory for these strings is allocated inside the UniC10 Plugin DLL, so it is not necessary to

allocate any buffers before calling such a function. To free this memory again, the DLL function

FreeWideChar should be called for every PWCHAR value once its data is not used anymore.

7

Function description
This section describes the functions exported by the UniC10 Plugin DLL in detail.

8

GetDLLVersion
PWCHAR GetDLLVersion()

Returns a string describing the loaded DLL’s version.

In order to avoid memory leaks, the return value should be freed by passing it to the FreeWideChar

function once it is not needed anymore.

In

Out

Return

dllVersion Version of the DLL in the form <Major>.<Minor>.<Release> r<Build>, for example
“1.0.0 r1234”. This document version describes the API of UniC10 Plugin versions
4.14.x.

9

SetLanguage
void SetLanguage(PWCHAR lang)

Sets the language of all dialogs and error messages used by UniC10 Plugin.

In

lang Language code of the language to use. Currently German “de” and English “en”
are available.

Out

Return

10

CheckRegistration
int CheckRegistration()

Checks if the UniC10 Plugin DLL is registered and contains a valid customer code.

In

Out

Return

0 Registration valid and commissions with the registered customer code can be
coded.

1 Registration invalid. PrepareCoding and Code functions will return with error code
4. To perform the registration procedure, call PerformRegistration. Note that for
dongle registrations it is sufficient to simply insert the dongle, a call to
PerformRegistration is not necessary. If registration is done with a license file, this
error code is always returned.

11

PerformRegistration
int PerformRegistration(HWND parent)

Opens the online registration dialog. Please note that dongle registrations are performed

automatically and do not require a call to this function.

In

parent Handle of the window that should be the parent of the dialogs that appear during
the registration. The registration dialogs only appear if the UniC10 Plugin DLL is
not currently registered. The registration procedure only needs to be performed
once per installation.

Out

Return

0 Registration was completed successfully and commissions with the registered
customer code can be coded.

1 Registration invalid. PrepareCoding and Code functions will return with error code
4. To perform the registration procedure, call PerformRegistration again.

2 Already registered. Performing the registration procedure is not necessary. To re-
perform a registration (for example to change the customer code), first call the
ClearRegistration function or, in case of a dongle registration, remove the dongle.

12

GetCustomerCode
PWCHAR GetCustomerCode()

Retrieves the customer code of the currently active registration.

Please note that if registration is done with a license file, a correctly branded reader (which matches

the license file) needs to be connected with the function ConnectReader first, otherwise no customer

code can be returned by this function.

In order to avoid memory leaks, the return value should be freed by passing it to the FreeWideChar

function once it is not needed anymore.

In

Out

Return

customerCode A hex string containing the customer code of the current registration or an empty
string if the product is not registered.

13

ClearRegistration
void ClearRegistration()

Deletes the current registration. This function has to be called first if a registration (for example the

customer code) should be changed. Afterwards the new registration can be performed again with

the PerformRegistration function.

In

Out

Return

14

GetRegisteredReaderNames
void GetRegisteredReaderNames(PWCHAR &readerNames)

Returns a list of valid reader names which can be used in the ConnectReader function.

In order to avoid memory leaks, the readerNames pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

Out

readerNames A list separated by STX control characters (0x02) of reader names that can be
used as parameter readerName in the ConnectReader function. The last reader
name is also terminated by an STX character.

Return

15

IsPCSCReader
int IsPCSCReader(PWCHAR readerName)

Checks if a specific reader is connected via PCSC protocol, like the Omnikey 5321 CL reader for

example. This function can be used to decide if it is necessary to enter RS232 specific parameters like

com port and baudrate on the user frontend. PCSC readers do not require these parameters.

In

Out

Return

0 The specified reader is no PCSC reader but connected to an RS232 port.

1 The specified reader is a PCSC reader connected via USB port.

16

ConnectReader
int ConnectReader(PWCHAR readerName, BYTE comport, unsigned int baudrate, BYTE stopbits,

BYTE databits, BYTE parity)

Attempts to connect to the reader specified by readerName. If a connection could be established,

the coding functions (PrepareCoding, Code) can be used.

If a reader is already connected before this function is called, it is disconnected first.

In

readerName The name of the reader to connect to. Valid and registered reader names should
be retrieved with the function GetRegisteredReaderNames.
If the string “AUTOCONNECT” is passed as reader name, UniC10 Plugin DLL enters
autoconnect mode and the actual reader connection is performed automatically
during a call to PrepareCoding. Autoconnect mode is disabled once
ConnectReader is called with a name other than “AUTOCONNECT” or when
DisconnectReader is called. If autoconnect mode should only be done for a certain
reader type, specify the readerName as “AUTOCONNECT:<readerName>”, for
example “AUTOCONNECT:Legic Advant SM4500”. This speeds up the autoconnect
process a lot because not all possible reader types have to be checked.
If the reader should be connected via TCP/IP (only specific MADA installations!),
the IP address and TCP port is appended to the reader name, separated by an @
character, for example “Multiband@192.168.0.13:10001”.

comport Serial comport the reader is connected to. If the connected reader is a PCSC
reader or connection is done via TCP/IP, this value is ignored.

baudrate Baudrate of the reader. If 0 is specified, the reader’s default baudrate is used. If
the connected reader is a PCSC reader, this value is ignored.

stopbits Stopbits of the reader. Valid values are:

• 0: 1 stop bit

• 1: 1.5 stop bits

• 2: 2 stop bits
If 0xFF is specified, the reader’s default stop bit setting is used. If the connected
reader is a PCSC reader, this value is ignored.

databits The reader’s databits. If 0xFF is specified, the reader’s default databits setting is
used. If the connected reader is a PCSC reader, this value is ignored.

parity The reader’s parity. Valid values are:

• 0: No parity

• 1: Odd parity

• 2: Even parity

• 3: Mark parity

• 4: Space parity
If 0xFF is specified, the reader’s default parity is used. If the connected reader is a
PCSC reader, this value is ignored.

Out

Return

0 Connection was successful.

1 Reader name invalid.

2 Connection could not be established.

17

CheckReaderConnection
int CheckReaderConnection()

Checks if the current reader is still connected.

This function can be used to determine when a connected reader is no longer accessible (e.g. if the

power supply is interrupted or the serial cable is disconnected) and can be called periodically to

monitor the reader connection state.

When a lost connection is detected, the function DisconnectReader should be called.

If the connected reader is a “Legic Advant SM4500” reader, calling this function also resets the

master memory timeout to the max value (255 minutes). There is no other way to refresh the master

timeout for this specific reader, so this function should be called periodically to avoid having to

reload Legic® masters.

In

Out

Return

0 Reader connected.

1 Reader not connected.

2 No reader connected but DLL is in autoconnect mode.

18

GetConnectedComPort
int GetConnectedComPort(BYTE &comport)

Returns the comport the currently connected reader is connected to.

If the reader does not connect by comport, for example a PCSC reader, the comport parameter has

the value 0.

This function can be used to check which comport a reader was connected to in autoconnect mode.

This comport could then be used as a first try in future connection attempts to speed up the

connection process.

In

Out

Return

0 Reader connected.

1 Reader not connected.

19

GetReaderSNR
PWCHAR GetReaderSNR()

Retrieves the serial number of the currently connected reader.

In order to avoid memory leaks, the return value should be freed by passing it to the FreeWideChar

function once it is not needed anymore.

In

Out

Return

readerSNR A hex string containing the serial number of the currently connected reader or an
empty string if the connected reader has no serial number or there is no reader
connected.

20

DisconnectReader
void DisconnectReader()

Disconnects the currently connected reader and frees its comport for other applications or for re-

connection.

This function should be called by the client application when a connection loss is detected by the

CheckReaderConnection function in order to clean up the DLL’s internal state.

If the DLL was currently In autoconnect mode, this mode is disabled after a call to this function.

In

Out

Return

21

SearchCards
int SearchCards(PWCHAR transType, PWCHAR &transDesc)

Reads information of every transponder that is currently in the connected reader’s field.

In order to avoid memory leaks, the transDesc pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

transType The transponder type to search for. If an empty string is passed, the
function returns all found transponders. If a transponder type is specified
only the transponders that match this string are returned. This allows for
faster selection because the reader does not have to search for every
possible transponder type.
To determine a certain chip’s transponder type string, call this function with
an empty transType parameter and check the transponderType field of the
returned transDesc parameter.
The transponder type string of the currently loaded commission can be
obtained by calling the GetLoadedCommissionTransType function.

Out

transDesc A string containing descriptions of all found transponders. Each transponder
description is represented by a string of the following format:
<UID>[ETX]<transponderType>[ETX]<unknownDesc> where [ETX] is the
control character 0x03.

• UID is a hexadecimal representation of the chip’s UID (serial
number), for example “3D002A55”. If a chip has no UID (for
example SLE4442), the UID is returned as “00”.

• transponderType uniquely identifies the chip type. For example a
Legic® Prime chip will always have the transponder type
“LegicPrime”. If the transponder type is unknown or not supported
by UniC10, the transponder type string is empty and a description
of the chip can be found in the unknownDesc field.

• If a chip was found that is not supported by UniC10 and the
corresponding transponder type is empty, a description of the chip
type is found in the unknownDesc field. This description might
change between releases so it should not be used to identify chip
types. For example currently Mifare Plus chips are not supported by
UniC10. For these chips the transponder type is empty and the
unknownDesc is for example “Mifare Plus 4k SL2”.

Multiple transponder descriptions (for multiple found transponders) are
separated by an STX (0x02) character. The last string description is also
terminated by an STX character.

Return

0 Execution successful.

1 No reader connected.

2 Invalid coding state. Has to be “Offline” or “Online” (see function
GetCodingState).

3 Unknown transponder type.

22

SearchCardsExtraInfo
int SearchCardsInfo(PWCHAR transType, PWCHAR &transDesc)

Reads information of every transponder that is currently in the connected reader’s field. In addition

to the SearchCards function, this function also reads additional chip information, e.g. “Mifare Desfire

4k EV1 v5” instead of just “Mifare Desfire”. Since reading this additional information takes some

time, execution time of this function is a bit slower than just calling SearchCards.

In order to avoid memory leaks, the transDesc pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

transType The transponder type to search for. If an empty string is passed, the function returns all
found transponders. If a transponder type is specified only the transponders that match
this string are returned. This allows for faster selection because the reader does not
have to search for every possible transponder type.
To determine a certain chip’s transponder type string, call this function with an empty
transType parameter and check the transponderType field of the returned transDesc
parameter.
The transponder type string of the currently loaded commission can be obtained by
calling the GetLoadedCommissionTransType function.

Out

transDesc A string containing descriptions of all found transponders. Each transponder description
is represented by a string of the following format:
<UID>[ETX]<transponderType>[ETX]<unknownDesc>[ETX]<chipType>[ETX]<chipVersion>
where [ETX] is the control character 0x03.

• UID is a hexadecimal representation of the chip’s UID (serial number), for
example “3D002A55”. If a chip has no UID (for example SLE4442), the UID is
returned as “00”.

• transponderType uniquely identifies the chip type. For example a Legic® Prime
chip will always have the transponder type “LegicPrime”. If the transponder
type is unknown or not supported by UniC10, the transponder type string is
empty and a description of the chip can be found in the unknownDesc field.

• If a chip was found that is not supported by UniC10 and the corresponding
transponder type is empty, a description of the type is found in the
unknownDesc field. This description might change between releases so it
should not be used to identify chip types. For example currently Mifare Plus
chips are not supported by UniC10. For these chips the transponder type is
empty and the unknownDesc is for example “Mifare Plus 4k SL2”.

• chipType contains additional type information of the transponder, e.g.
“MIM1024” or “4k EV1”.

• chipVersion contains additional version information of the transponder, e.g.
“v4” or “v5” for Mifare Desfire chips or “NM” for Legic® Prime chips.

Multiple transponder descriptions (for multiple found transponders) are separated by
an STX (0x02) character. The last string description is also terminated by an STX
character.

Return

0 Execution successful.

1 No reader connected.

2 Invalid coding state. Has to be “Offline” or “Online” (see function GetCodingState).

23

3 Unknown transponder type.

4 Error reading chip type and version.

24

PrepareCoding
int PrepareCoding(PWCHAR commFileName, HWND codingCallback, HWND parent, int

&estimatedCreationSteps, BYTE &hasCardID, PWCHAR &maxCardID, PWCHAR &varData)

Prior to the actual coding, this function has to be called once after a new commission has been

loaded or a reader connection has been established.

If the DLL is in autoconnect mode, this function tries to automatically connect to a compatible reader

if no appropriate reader connection has been established yet. Please note that depending on the

number of installed COM Ports this function may take several seconds to complete if autoconnect

mode is activated.

In order to avoid memory leaks, the maxCardID and varData pointers should be freed by passing

them to the FreeWideChar function once they are not needed anymore.

In

commFileName The absolute path of the xml file describing the coding.
If more than one commission should be loaded in order to perform combi
coding, there are two possibilities:

• Specify more than one xml file in this parameter. Each file has to be
separated by an STX (0x02) character.

• Specify the path to a text file with the ending .cdf (Combi Definition
File). This text file has to contain all file names (not the full path) of
all XML coding files that should be loaded, each in a separate row.
This option was added to allow combi coding without having to
change the implementation of the UniC10 Plugin DLL.

codingCallback Handle to the window that receives status messages of the coding process.
The status message is defined as WM_CREATE_CARD (0x804D). The
message’s wParam defines the actual status:
0 - CODING_START: A card has been found and the coding process is about
to start.
1 - CODING_SUCCESS: The card has been successfully coded. lParam
contains the handle to logging information which can be obtained by the
function GetLog.
2 - CODING_FAIL: The coding could not be completed because of an error.
lParam contains a handle to logging information which can be obtained by
the function GetLog. The log can be stored by the client application or used
for displaying the actual error that caused the coding to fail.
3 - CARD_REMOVED: The coded card (either successful or failed) has been
removed from the reader’s field. This information can be used to determine
when the next coding can start.
4 - CODING_ERROR: An internal error has occurred and the coding of the
card has been cancelled.
5 - CODING_STEP: The coding has progressed one step. In conjunction with
the estimatedCreationSteps parameter of the function PrepareCoding, this
message can be used to determine the progress of the coding.
6 - This value is never sent and reserved for future use.
7 - CARD_FINISHED: In case of a combi coding, this message is sent every
time one chip’s coding process has finished. Note that for backwards
compatibility reasons, this message is only sent if the combi coding was
loaded with the first option of the commFileName parameter (multiple XML

25

files separated by STX characters).
Since version 4.8.0 of the DLL, it is possible to use and alternative to
Windows messages as a means to receive the status messages of the coding
process. To activate this alternative callback feature, the codingCallback
parameter has to be set to 0. Also, instead of the Code function, the
CodeWithCallback has to be used where a callback function can be
specified which retrieves the wParam an lParam values according to the
above specification. The callback mode can be useful in environments
where Windows messages cannot be easily retrieved.

parent Handle of the window that should be the parent of possible pop-up
windows that appear during the preparation phase. A pop-up window
appears for example if a LEGIC® prime commission is loaded and the
specified reader is missing master cards mandatory for the coding of that
commission.
If this value is 0, no dialogs are opened and no warnings are displayed if any
prerequisites for the encoding are not met. Instead, an appropriate error is
thrown during card coding (for example NO_MASTER_CARD).

Out

estimateCreationSteps The number of steps the coding of a card with the loaded xml coding
mask(s) will approximately need on the connected reader. This number can
be used in conjunction with the CODING_STEP messages (see parameter
codingCallback) to determine the current progress of the coding. If this
number is 0, the number of steps needed to code the card is unknown.

hasCardID Flag indicating whether at least one of the loaded commissions defines a
card ID field. 0 means there is no commission with a card ID field, 1 means
there is one (or more) card ID defined.

maxCardID A string defining the maximum possible (decimal) card ID. The maximum
card ID is limited by the size of the commissions’ smallest card ID field. If the
commissions define no cardID field, this parameter can be ignored. Note
that the maximum cardID is not necessarily convertible into a 32-bit integer
variable because there is no limit on the size of a cardID field.

varData A string describing the loaded commissions’ variable data fields. Each
variable data field is represented by a string of the following format:
<areaName>[ETX]<inputType>[ETX]<maxValue> where [ETX] is the control
character 0x03. areaName is the name (and index) of the variable data field.
inputType can be one of the following values, also defining the
interpretation of the maxValue field:

• ASCII: Valid input values are all ASCII characters (0x20-0xFF).
maxValue is to be interpreted as number of characters / bytes. If
the entered input value is shorter than the maximum number of
characters, the string is padded with 0x00 on the left side.

• HEX: Valid input values are hexadecimal characters (“0-9”, “a-f”, “A-
F”). maxValue is the maximum number of bits the variable data
field can hold. Example: If maxValue is 13, valid input values range
from “0” to “1FFF”.

• DEC: The input value is a decimal value (each character “0-9”).
maxValue is the maximum decimal value that can be entered.

• BCD: Valid input values are BCD characters (“0-9”). maxValue is the
number of allowed BCD digits.

Multiple string descriptions (for multiple variable data fields) are separated
by an STX (0x02) character. The last string description is also terminated by
an STX character.

26

Return

0 Preparation successful. Coding State has been changed to “Online” (see
function GetCodingState().

1 File not found.

2 Reader not connected.

3 Reader cannot code the commission(s). This can happen for example if the
connected reader is a Legic Prime MSM-S module and the commission
specifies a Mifare DESFire coding.

4 License not valid. If a dongle license is used, it is sufficient to insert the
dongle. Other licensing methods like the online registration however
require a call to CheckRegistration at least once per installation.

5 CRC validation of one of the specified commission files failed. Either the file
was manually changed or the file contains a different customer code.

6 Commission file deprecated. At least one of the commission files was
created with a newer version of UniC10 and contains coding directives that
are not known by the current version of UniC10 Plugin. Solve by updating
the UniC10 Plugin DLL to the latest version.

7 Transponder type specified by one of the commission files is unknown
because it was introduced by a later version of UniC10. Solve by updating
the UniC10 Plugin DLL to the latest version.

8 Commission file(s) invalid.

9 At least one of the commissions cannot be used because it defines external
data source fields. UniC10 Plugin currently does not support external data
sources.

10 Tried to load a combi commission with a duplicate transponder type – for
combi codings, all loaded commissions must be of a different transponder
type. For example, it is not possible to load two Mifare DESFire commissions
simultaneously.

11 Tried to autoconnect a reader but no reader was found that can encode all
commissions.

27

GetLoadedCommissionTransType
int GetLoadedCommissionTransType(PWCHAR &transType)

Returns the transponder type string(s) of the loaded commission(s). This string can be used in the

SearchCards function.

In order to avoid memory leaks, the transType pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

Out

transType The loaded commission’s transponder type string for use in the SearchCards
function. If more than one commission was loaded for combi coding, the
transponder types are separated by an STX (0x02) character. Note that the
SearchCards function only allows passing one transponder type, so in case
of a combi coding the transType string needs to be split up.

Return

0 Execution successful.

1 No commission loaded.

28

AnalyzeCodingMask
int AnalyzeCodingMask(PWCHAR commFileName, PWCHAR &transType, BYTE &hasCardID,

PWCHAR &maxCardID, PWCHAR &varData)

Gets the same information from a coding mask XML file that is also obtained by the PrepareCoding

function – however for this function, it is not necessary to connect a reader.

In order to avoid memory leaks, the maxCardID, transType and varData pointers should be freed by

passing them to the FreeWideChar function once they are not needed anymore.

In

commFileName The absolute path of the xml file.

Out

transType The specified commssion’s transponder type.

hasCardID Flag indicating whether the specified commission defines a card ID field. 0
means there is no card ID field, 1 means there is one.

maxCardID A string defining the maximum possible (decimal) card ID. Note that the
maximum cardID is not necessarily convertible into a 32-bit integer variable
because there is no limit on the size of a cardID field.

varData A string describing the loaded commission’s variable data fields. Each
variable data field is represented by a string of the following format:
<areaName>[ETX]<inputType>[ETX]<maxValue> where [ETX] is the control
character 0x03. areaName is the name (and index) of the variable data field.
inputType can be one of the following values, also defining the
interpretation of the maxValue field:

• ASCII: Valid input values are all ASCII characters (0x20-0xFF).
maxValue is to be interpreted as number of characters / bytes. If
the entered input value is shorter than the maximum number of
characters, the string is padded with 0x00 on the left side.

• HEX: Valid input values are hexadecimal characters (“0-9”, “a-f”, “A-
F”). maxValue is the maximum number of bits the variable data
field can hold. Example: If maxValue is 13, valid input values range
from “0” to “1FFF”.

• DEC: The input value is a decimal value (each character “0-9”).
maxValue is the maximum decimal value that can be entered.

• BCD: Valid input values are BCD characters (“0-9”). maxValue is the
number of allowed BCD digits.

Multiple string descriptions (for multiple variable data fields) are separated
by an STX (0x02) character. The last string description is also terminated by
an STX character.

Return

0 XML file is valid and could be analysed.

1 File not found.

4 License not valid. If a dongle license is used, it is sufficient to insert the
dongle. Other licensing methods like the online registration however
require a call to CheckRegistration at least once per installation.

5 CRC validation of the specified commission file failed. Either the file was
manually changed or the file contains a different customer code.

6 Commission file deprecated. The commission file was created with a newer
version of UniC10 and contains coding directives that are not known by the

29

current version of UniC10 Plugin. Solve by updating the UniC10 Plugin DLL
to the latest version.

7 Transponder type specified is unknown because it was introduced by a later
version of UniC10. Solve by updating the UniC10 Plugin DLL to the latest
version.

8 Commission file invalid.

9 The commission cannot be used because it defines external data source
fields. UniC10 Plugin currently does not support external data sources.

30

ReadLegicMaster
int ReadLegicMaster()

This function reads a Legic® master card (IAM, GAM, SAM, XAM_1) and adds it to the reader’s master

data memory. This function can only be called in the “Online” or “Offline” state while there is a

reader connected (see function GetCodingState).

In

Out

Return

0 Master card successfully added to master data memory.

1 The connected reader does not support Legic® media.

2 No card or no Legic® card in the RFID field of the reader.

3 Invalid coding state. Has to be “Online” or “Offline” and a reader has to be
connected (see function GetCodingState).

4 Could not add Legic® master data. The reason can be for example that the card is
no master card, the master data was already added or the master data memory of
the reader is full.

31

CheckLegicMasters
int CheckLegicMasters(PWCHAR &missingMasters)

This function checks which Legic® master cards (IAM, GAM, SAM, XAM_1) are missing from the

reader’s memory in order to be able to encode the loaded commission(s). This function can only be

called in the “online” state (see function GetCodingState).

In order to avoid memory leaks, the missingMasters pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

Out

missingMasters A string describing the master data that will have to be added to the
reader’s memory before the loaded commission can be coded. Each missing
master data is represented by a string of the following format:
<slaveStamp>[ETX]<requiredMaster> where [ETX] is the control character
0x03. slaveStamp is the stamp of the segment that has no matching master
loaded. requiredMaster is a human readable string describing what kind of
master has to be added in order to encode this segment, for example “IAM
<= 30000000”. This human readable string is the same string that is
displayed in the missing-master-dialog that appears when the
PrepareCoding function is called with the parent parameter != 0.
Multiple string descriptions (for multiple required masters) are separated by
an STX (0x02) character. The last string description is also terminated by an
STX character.
If more the than one Legic® commission is loaded for combi coding, this list
contains all missing masters of all Legic® commissions.

Return

0 Execution successful.

1 The connected reader does not support Legic® media.

2 None of the loaded commissions is a Legic® commission.

3 Invalid coding state. Has to be “Online” (see function GetCodingState).

4 Error accessing the reader’s master data memory.

32

33

ReadLegicMasterMemory
int ReadLegicMasterMemory (PWCHAR &masters)

This function returns the contents of the reader’s Legic® master card memory. It can be used to

check if certain masters are already loaded in the reader’s memory.

This function only works if the connected reader is one of the following readers:

• Legic Prime MSM-S

• Legic Advant SM2570C

• Legic Advant SM4500

In order to avoid memory leaks, the masters pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

Out

masters A string describing the reader’s master data memory. Each master data is
represented by a hex string of its stamp.
Multiple masters are separated by an STX (0x02) character. The last string
master data is also terminated by an STX character.
For example, if a reader contains two masters, the returned string might
look like this: “3000ABCD[STX]28289C450032E4[STX]”.

Return

0 Execution successful.

1 There is no Legic® reader connected.

2 Error accessing the reader’s master data memory.

34

Code
int Code(PWCHAR cardID, PWCHAR varData)

This function starts the coding process with the supplied user-definable data. The function returns

immediately and the actual coding state is reported through window messages to the window

specified in the codingCallback parameter of the associated PrepareCoding function.

Please note that this function can only be used if callback mode is not activated (i.e. the

codingCallback parameter of PrepareCoding was set to a value other than 0). If callback mode is

activated, use the function CodeWithCallback instead.

In

cardID The decimal card ID that is to be coded into the commission’s card ID field in string
representation. If, for example, the card ID 123 (decimal) is to be coded, this
parameter has to be the string “123”. If the commission specifies no card ID, this
field is ignored.

varData A list separated by STX characters (0x02) of the variable data of the commission.
Each variable data contains the variable area name, an ETX character [0x03] and
the actual data which is to be written. The format of the actual data depends on
the type of variable data field.
Example: A commission contains four variable data fields:

1. “Year of birth”, Input Format: Decimal
2. “Currency”, Input Format: Hex
3. “Name”, Input Format: ASCII
4. “CCN”, Input Format: BCD

A valid varData string for this commission would be:
“Year of birth[ETX]1975[STX]Currency[ETX]D320[STX]Name[ETX]Paul Smith
[STX]CCN[ETX]76544457[STX]” where [STX] is the character code 0x02 and [ETX]
0x03. The last varData entry is also terminated by [STX].

Out

Return

0 Coding started.

1 Invalid card ID. Either no decimal value or doesn’t fit into the commission’s
smallest card ID field.

2 Invalid var data string.

3 Invalid coding state. Has to be “Online” (see function GetCodingState).

4 License invalid. This can occur for example if a dongle license is in use and the
dongle has been removed. The internal coding state however is not changed so if
the dongle is reinserted again, the Code function will succeed again.

5 Invalid coding mode. Callback mode was selected by setting the codingCallback
parameter of function PrepareCoding to 0.

35

SleepAndCode
int SleepAndCode(PWCHAR cardID, PWCHAR varData, int searchSleep)

This function is similar to the Code function. The additional parameter searchSleep sets a sleep time

by which the coding is delayed after a card is detected and before the coding state is switched to

“CreateCard”. This is necessary for some printers which do not immediately reach the coding

position of a card but instead move the card back out of the field before the final coding position is

reached. Without the delay the coding would start as soon as the card enters the field – because the

card is still in movement however it might leave the field again while the coding is still in progress

which would cause a coding failure.

In

cardID See Code function

varData See Code function

searchSleep Time in milliseconds by which the coding is delayed after a card is found and
before the coding state is switched to “CreateCard”

Out

Return

See Code function

36

CodeWithCallback
int CodeWithCallback(PWCHAR cardID, PWCHAR varData, int searchSleep, TCALLBACK callback)

This function is to be used instead of the Code (or SleepAndCode) function when callback was

activated (by passing 0 as the codingCallback parameter of the PrepareCoding function).

The main difference to the Code function is, that the status callbacks of the coding are not sent via

the windows message WM_CREATE_CARD (0x804D). Instead, the status callbacks are passed to the

function that is referenced by the callback parameter of this function. The callback function has to a

function of the following type:

void Callback(WPARAM wParam, LPARAM lParam)

wParam and lParam correspond directly to the according windows message parameters as

described in the PrepareCoding function description (parameter codingCallback).

In

cardID See Code function

varData See Code function

searchSleep See SleepAndCode function

callback The callback function that receives the asynchronous status callbacks of the coding
process.

Out

Return

See Code function. Error code 5 is thrown by this function when callback mode is off.

37

AbortCoding
int AbortCoding()

Attempts to abort a running coding process. This only works if the coding process is in the “scan for

card” or “wait for remove” state (see function GetCodingState).

Note that this function may take several hundred ms to return because it may need to wait for a

reader card polling cycle to finish. Once it does return though, the coding state has been changed to

“online”.

In

Out

Return

0 Coding aborted successfully and coding state changed to “online”.

1 Coding could not be aborted because it is currently not in the “scan for card” or
“wait for remove” state.

38

GetCodingState
int GetCodingState()

Returns the current coding state. The following states and their transitions are implemented:

In

Out

Return

0 Offline – coding has not yet been initialized with a valid commission and reader.

1 Online – coding is initialized and can be started.

2 Scan for card – coding has been started by the Code function and the reader is
currently searching for a card that can be coded.

3 Create card – card is currently being coded.

4 Wait for remove – card was coded but is still in the reader’s field.

stm Main Workflow State Machine

Initial

Scan for Card

Create Card
Wait for Remov e

Offline Online

Any State

Internal Error
Disconnect Abort / Card

Removed

Start Coding
Prepare Coding

Abort

Create Complete

Card found

39

GetLog
int GetLog(LPARAM logHandle, PWCHAR &cardUID, int &createdDate,BYTE &codingResult,

PWCHAR &shortDesc, PWCHAR &cardID, PWCHAR &varData)

Resolves the log handle which can be obtained by the callback message of the Code function into

actual logging data.

The client application can decide whether to store the log, just use it to display a coding’s outcome or

ignore it completely. In any case, to avoid memory leaks, the logHandle should be freed with the

FreeLog function at some time after it has been obtained.

Note that if a combi coding was performed, only the information of the last chip is returned by this

function. This is sufficient if only the coding result has to be obtained because the success of the last

coded chip is also the success of the whole coding. If logs of each individual card have to be obtained,

the function GetCombiLog has to be called.

Furthermore, the cardUID, shortDesc, cardID and varData pointers should be freed by passing them

to the FreeWideChar function once they are not needed anymore.

In

logHandle Handle to the log data as obtained by the WM_CREATE_CARD callback message
(see PrepareCoding function). The coding states CODING_SUCCESS and
CODING_FAIL both contain log data in their lParam.

Out

cardUID A hex string containing the UID (serial number) of the coded card. The length
depends on the transponder type of the card.

createdDate Date and time when the coding of the card finished. The time is represented as
seconds since the standard epoch of 1/1/1970 00:00:00 (Unix timestamp).

codingResult The outcome of the coding. TRUE (>0) values are to be interpreted as a successful
coding, FALSE (==0) values as a failed coding.

shortDesc A short description that serves as a coding protocol overview. It usually contains
the user-definable data (card ID and varData) that was used for the card. If the
coding failed, this field contains the error message that caused the coding to fail.

cardID The decimal card ID that was coded into the commission’s card ID field in string
representation.

varData A list separated by STX characters (0x02) of the variable data that was coded into
the card. Each variable data contains the variable area name, an ETX character
[0x03] and the actual data which was written. The format of the actual data
depends on the type of variable data field.
Example: A commission contains four variable data fields:

1. “Year of birth”, Input Format: Decimal
2. “Currency”, Input Format: Hex
3. “Name”, Input Format: ASCII
4. “CCN”, Input Format: BCD

A possible varData string for a coded card could be:
“Year of birth[ETX]1975[STX]Currency[ETX]D320[STX]Name[ETX]Paul
Smith[STX]CCN[ETX]76544457” where [STX] is the character code 0x02 and [ETX]
0x03.

Return

0 OK

1 Invalid log handle.

40

41

GetCombiLog
int GetCombiLog(LPARAM logHandle, BYTE combiIndex, PWCHAR &cardUID, int

&createdDate,BYTE &codingResult, PWCHAR &shortDesc, PWCHAR &cardID, PWCHAR &varData)

An extension of the GetLog function that should be used if information on combi coded cards is to be

obtained. The only difference to the GetLog function is the added combiIndex parameter.

In

logHandle See GetLog function.

combiIndex Specifies for which of the combi coded chips the log information is returned. The
coding that corresponds to the first commission loaded in PrepareCoding has
index 0, the second index 1, etc.

Out

cardUID See GetLog function.

createdDate See GetLog function.

codingResult See GetLog function.

shortDesc See GetLog function.

cardID See GetLog function.

varData See GetLog function.

Return

0 OK

1 Invalid log handle.

2 Invalid combi index.

42

FreeLog
int FreeLog(LPARAM logHandle)

Frees the log handle and the memory allocated by the actual log data. This function should be called

for all log handles that are retrieved through the callback messages of the Code function.

In

logHandle Handle to the log data as obtained by the WM_CREATE_CARD callback message
(see PrepareCoding function. The coding states CODING_SUCCESS and
CODING_FAIL both contain log data in their lParam.

Out

Return

0 Log handle and associated log data freed successfully.

1 Invalid log handle.

43

FreeWideChar
void FreeWideChar(PWCHAR wideChar)

Frees the memory that was allocated for the string the PWCHAR parameter points to. To avoid

memory leaks, this function should be called for every PWCHAR return value that was retrieved by a

UniC10 Plugin function.

In

wideChar Pointer to the wide char string as returned by a UniC10 Plugin function, for
example GetRegisteredReaderNames.

Out

Return

44

LoadReadDefinition
int LoadReadDefinition(PWCHAR readDefFile)

Loads a read definition file (*.RDX) which describes the data that should be read with the ReadCard

function.

Read definition files are created by MADA Marx Datentechnik, similar to commission files.

In

readDefFile Full path name of the read definition file to load.

Out

Return

0 OK

1 File not found.

2 File is no valid read definition file.

45

ReadCard
int ReadCard(PWCHAR &readData)

Reads the data from a transponder as defined in the read definition file loaded by the

LoadReadDefinition function.

Since the main use of the read function is to read card numbers from transponders, the read data is

always a decimal number. Note that while the returned string represents a decimal number, this

number is not limited in size, so it is not guaranteed that it can be converted into a 32 bit Integer.

This function can only be called in the coding states Offline or Online. Furthermore, connection to a

reader has to be established and the read definition needs to have been loaded by calling the

LoadReadDefinition function. Also, the connected reader must support the transponder defined in

the loaded read definition file.

In order to avoid memory leaks, the readData pointer should be freed by passing it to the

FreeWideChar function once it is not needed anymore.

In

Out

readData The read data in decimal representation

Return

0 OK

1 Wrong coding state. Must be Online or Offline.

2 No read definition file loaded.

3 No reader connected.

4 The connected reader cannot read the transponder specified in the loaded read
definition file.

5 Zero or more than one transponder in the field that matches the transponder
specified in the loaded read definition file.

6 The data defined in the read definition file could not be read from the
transponder. Either the transponder was removed from the field before the data
could be read or the coded structure on the transponder does not match the data
of the read definition file.

46

Implementation Guidelines
A typical implementation of the UniC10 Plugin API consists of the following steps:

1. Call the CheckRegistration function at least once for each new installation of the application

to ensure that the software is registered. If CheckRegistration returns false and no dongle

registration is available for the product, call PerformRegistration. If the application only

wants to offer a registration by dongle the call to PerformRegistration can be skipped – the

registration is active automatically as long as the dongle is inserted.

2. [OPTIONAL] Retrieve the list of registered readers with the GetRegisteredReaderNames

function and display it to the user in a combobox.

3. Try to establish a connection to a reader (specified by its name and comport which was

either selected by the user or for example predefined in an INI-File) with the ConnectReader

function. If only one reader is connected and connection speed is of no concern, pass the

reader name “AUTOCONNECT” to the ConnectReader function to automatically detect a

compatible reader when PrepareCoding is called.

4. [OPTIONAL] Once a connection to a reader has been established start a thread that

periodically checks the reader connection every second with the CheckReaderConnection

function. As soon as the function fails, notify the user that the reader connection has been

lost and call the Disconnect function.

5. Initialize the coding by calling the PrepareCoding function. The function needs the path to

the .xml coding mask file that describes the coding and the handle to the window processing

the WM_CREATE_CARD callback messages. If more than chip should be encoded in a combi

card, call the PrepareCoding function accordingly. [OPTIONAL] Store the

estimateCreationSteps value to be able to use a progress bar for displaying coding progress.

[OPTIONAL] Use the hasCardID, maxCardID and varData values to display commission-

specific input fields for the user.

6. [OPTIONAL] If the coded commission is a Legic® commission, check which master data has to

be loaded to the reader by calling the CheckLegicMasters function. Repeatedly add masters

by calling the ReadLegicMasters function until all necessary masters have been loaded to the

reader.

7. For each card that is to be programmed:

a. Call the Code function with the appropriate parameters (cardID, varData) for the

current card.

b. If after a set amount of time no CODING_START message arrives, call the function

AbortCoding and display an error. This can happen if a card is moved to the reader

that contains no chip or a wrong chip type.

c. [OPTIONAL] Display a message “Searching for card” and once the CODING_START

message arrives, display “Coding…”.

d. [OPTIONAL] For each incoming CODING_STEP message, increase the position of the

progress bar that displays the coding progress.

e. [OPTIONAL] If a combi coding is performed, visualize that the coding of one chip is

finished as soon as a CARD_FINISHED message arrives.

f. The coding of the card is finished once one of the messages CODING_SUCCESS,

CODING_FAIL or CODING_ERROR arrives.

g. [OPTIONAL] Retrieve the log data for the card by calling the GetLog function with the

log handle supplied in CODING_SUCCESS or CODING_FAIL. Store this log in a log file

47

or in a database for future reference. If a combi coding was performed, use the

GetCombiLog function instead.

h. Free the log data by calling the FreeLog function with the log handle supplied in

CODING_SUCCESS or CODING_FAIL.

8. When the last card was coded, stop the coding by calling AbortCoding, disconnect the reader

by calling the DisconnectReader function and unload the UniC10 Plugin DLL.

48

Version History
1.14.0 • Added function ReadLegicMasterMemory

• DLL version 4.14.x match to document version in function GetDLLVersion

1.13.0 • Added function AnalyzeCodingMask

• DLL version 4.13.x match to document version in function GetDLLVersion

1.12.0 • Added description of TCP/IP connection to function ConnectReader

• DLL version 4.12.x match to document version in function GetDLLVersion

1.11.0 • Added description for autoconnect mode for specific reader in function
ConnectReader

• Added function GetConnectedComPort

• DLL version 4.11.x match to document version in function GetDLLVersion

1.10.0 • Added function SearchCardsExtraInfo

• DLL version 4.10.x match to document version in function GetDLLVersion

1.9.1 • Added “Offline” to allowed coding states in function ReaderLegicMaster

1.9.0 • Added function GetReaderSNR

• DLL version 4.9.x match to document version in function GetDLLVersion

1.8.0 • Added description about callback mode to PrepareCoding function’s codingCallback
parameter

• Added function CodeWithCallback

• Added notes about callback mode to Code function

• Added error code 5 to Code function

• DLL version 4.8.x match to document version in function GetDLLVersion

1.7.1 • Added license file description to registration section

• Added license file remark to function CheckRegistration

• Added license file remark to function GetCustomerCode

1.7.0 • Added autoconnect mode description to functions ConnectReader,
CheckReaderConnection, DisconnectReader, PrepareCoding

• Added notes about autoconnect mode to implementation guidelines

• Added error code 2 to function CheckReaderConnection

• Added error code 11 to function PrepareCoding

• DLL version 4.7.x match to document version in function GetDLLVersion

1.6.1 • Added note to abort coding after a timeout in implementation guidelines

1.6.0 • Added function LoadReadDefinition

• Added function ReadCard

• Added notes about the read function in overview.

• Added combi coding note to GetLog function

• Added combi coding note to CheckLegicMasters function

• Added function GetCombiLog

• Added comments about combi coding to GetLoadedCommissionTransType function

• Added combi functions to PrepareCoding function

• Added remark about combi coding to overview

• Added notes about combi coding in implementation guidelines

• DLL version 4.6.x match to document version in function GetDLLVersion

1.5.1 • Added remark about resetting the timeout of Legic® master data memory in
function CheckReaderConnection.

1.5 • Added function CheckLegicMasters

• Added function SearchCards

• Added function GetLoadedCommissionTransType

• Added function FreeWideChar

49

• Added examples of using CheckLegicMasters and ReadLegicMasters to
Implementation Guidelines

• Added chapters “Registration” and “Memory Management”

• Added notes about FreeWideChar to functions that return PWCHAR pointers

• Added error code 9 to function PrepareCoding

• DLL version 4.5.x match to document version in function GetDLLVersion

1.4 • Added 0 value description to parent parameter of function PrepareCoding

• Added function ReadLegicMaster

• DLL version 4.4.x match to document version in function GetDLLVersion

1.3 • Added function SleepAndCode

• DLL version 4.3.x match to document version in function GetDLLVersion

1.2 • Added function IsPCSCReader

• Added PCSC description to ConnectReader function

• DLL version 4.2.x match to document version in function GetDLLVersion

1.1 • Fixed parameter description of PrepareCoding function (in / out section headers
incorrect)

• Added return value 4 (License invalid) in Code function

• Added return values 4 to 8 in PrepareCoding function (License invalid and more
precise error codes for commission file parsing)

• Changed return value 1 of PrepareCoding function “Invalid commission file or file
not found.” -> “File not found”

• Added function SetLanguage

• Added function CheckRegistration

• Added function PerformRegistration

• Added function ClearRegistration

• Added function GetCustomerCode

• DLL version 4.1.x match to document version in function GetDLLVersion

• Added description of registration process and customer codes

• Added registration step to implementation guidelines

1.0 Initial Revision

